Техника быстрого счета для детей


Устный счет: техника быстрого счета в уме

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет - это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются - как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети - ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды - ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета - простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем - единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел - это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения - это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения - с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 - это дважды умножить на 2;

  • умножить на 6 - это значит умножить на 2, а потом на 3;

  • умножить на 8 - это трижды умножить на 2;

  • умножить на 9 - это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 - это дважды разделить на 2;

  • разделить на 6 - это сначала разделить на 2, а потом на 3;

  • разделить на 8 - это трижды разделить на 2;

  • разделить на 9 - это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 - это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 - 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко - это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах. Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы - это очень наглядно и удобно. Диапазон таких вычислений очень ограничен. Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа - единицам. В нашем примере - 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это - из области фокусов. Правило действует только при умножении на 9.  А не проще ли, для умножения 5 на 9 выучить таблицу умножения?  Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь. 

Устный счёт на автомате

  • Во-первых, необходимо хорошо знать состав числа и таблицу умножения.

  • Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.

  • В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» - упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку - и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

myintelligentkids.com

Эта японская методика научит любого ребенка быстро считать в уме

Педагог, руководитель Центра развития интеллекта «Пифагорка» в Москве Елена Клещёва рассказала «Летидору», что такое ментальная арифметика и почему она нужна каждому человеку.

На занятиях дети учатся быстрому счету с помощью специальной счетной доски (абакус, соробан). Педагоги объясняют, как правильно перебирать костяшки на спицах, чтобы малыши могли почти мгновенно получить ответ на сложный пример. Постепенно привязка к счетам ослабевает и дети представляют те действия, что совершали со счетами, в уме.

Программа рассчитана на 2-2,5 года. Сначала ребята осваивают сложение и вычитание, затем — умножение и деление. Навык приобретается и развивается за счет многократного повторения одних и тех же действий. Методика подходит практически всем детям, принцип обучения — от простого к сложному.

Занятия проходят один-два раза в неделю и длятся один-два часа.

Древние счеты абакус, на которых считают дети, известны уже более 2,5 тысяч лет. Дети учатся считать на специальных счетах. Известно, что их использовали еще в Древнем Риме. В современном мире счет на абакусе распространен в Японии, Китае, Индии, Малайзии, а также других странах.

Вот уже более 50 лет ментальная арифметика входит в систему государственного образования в Японии. Интересно, что после окончания школы люди продолжают совершенствовать свои навыки в устном счете. В Стране восходящего солнца ментальную арифметику считают чем-то вроде спорта. По ней даже проводят соревнования. В России теперь тоже ежегодно проводятся международные турниры по Ментальной арифметике.

Когда дети считают, они задействуют сразу оба полушария мозга. Ментальная арифметика развивает фотографическую и механическую память, воображение, наблюдательность, улучшает концентрацию внимания.

Повышается общий уровень интеллекта. Это значит, что ребятам легче усваивать большие объемы информации в сжатые сроки. Сразу видны успехи в иностранных языках. На заучивание стихов и прозы теперь не надо тратить весь день.

У школьников более медлительных ускоряется быстрота реакции.

Они начинают не просто молниеносно считать, но быстрее думать и принимать решения, не связанные с арифметикой.

Бывают и неожиданные результаты. Как-то в центр пришел мальчик, который занимался теннисом. Мама рассказала, что у ее сына проблемы с координацией движений. Неожиданно их удалось решить именно за счет интенсивов по ментальной арифметике.

Развивать мозг с помощью ментальной арифметики можно в любом возрасте, но наилучших результатов можно добиться до 12–14 лет. Детский мозг очень пластичен, подвижен. В юном возрасте в нем наиболее активно формируются нейронные связи, поэтому наша программа дается легче ребятам до 14 лет.

Чем старше человек, тем сложнее ему абстрагироваться от своего опыта и знаний и просто доверять абакусу. Я осваивала эту методику в 45 лет и постоянно сомневалась, правильно ли у меня получается, нет ли ошибки. Это очень мешает обучению.

Но чем труднее человеку осваивать этот счет, тем больше от него пользы.

Человек как бы преодолевает себя, с каждым разом у него получается все лучше и лучше.

Занятия не проходят даром, мозг взрослого человека также активно развивается.

Только не стоит ожидать от взрослого таких же результатов, как от ребенка. Мы можем научиться методике, но посчитать так же быстро, как это делает второклассник, уже не получится. Как показывает опыт, оптимальный возраст, с которого лучше начинать занятия — 6 и 7 лет.

Обязательное условие занятий — ежедневные тренировки на абакусе. Всего 10-15 минут. Детям необходимо отрабатывать формулу, которую им дал на уроке преподаватель, и доводить свои действия до автоматизма. Только в этом случае ребенок научится считать быстро. Здесь важна организационная роль родителей, которым нужно следить за регулярными тренировками.

Дети не устают на занятиях за счет постоянной смены видов деятельности

Ментальная арифметика в домашних условиях не просто возможна, но даже необходима. Основной вид деятельности на ментальной арифметике — счет на абакусе. Дети считают разными способами: на слух, в рабочих тетрадях, у школьной доски на демонстрационном абакусе, используя электронный тренажер «Веселый соробан», на ментальной карте (это графическое изображение абакуса, с помощью которого дети представляют, как передвигают косточки на счетах).

Помимо счета есть и другие упражнения на развитие памяти, внимания и мышления — задания с таблицей Шульте (таблицы со случайно расположенными объектами, на которых ребенок ищет предметы в определенном порядке; используют для улучшения периферического зрения), головоломки, лабиринты, рисование двумя руками, нахождение отличий и прочие.

Эти дополнительные задания дети воспринимают как отдых. Кричат «ура» и с радостью проходят лабиринты разной сложности. Также на занятиях ребята учатся скорописи, чтобы рука успевала записывать ответы так же быстро, как их выдает мозг.

Фотографии предоставлены Еленой Клещёвой.

letidor.ru

Самый эффективный метод быстрого счета в уме для детей

Раннее дошкольное развитие ребенка сегодня, как говорится, в тренде. Иногда оно приобретает такие масштабы, что превращается в настоящую гонку за новыми успехами в различных сферах знаний. Среди них есть совершенно бесполезные и по-настоящему ценные знания и навыки. Устный счет относится к обязательным направлениям в обучении дошкольников. И родителям необходимо найти самый эффективный способ научить ребенка считать в уме, чтобы в начальной школе он с легкостью приступил к изучению математики.

Выбираем лучший метод быстрого счета в уме для детей. Польза самых популярных методик

Родители будущих школьников тоже были детьми. Все они когда-то учились считать традиционным путем, то есть изучали состав чисел, таблицу умножения. Единственный для них метод быстрого счета в уме – это решение примеров в столбик или складывание (отнимание) чисел по частям. Сегодня в обучении малышей используют различные авторские методики. И каждая из них обещает лучший результат. Так ли они хороши? Давайте вместе разбираться.

Метод счета в уме Леушиной (традиционная программа)

Это программа советской школы, которая до сих пор используется в большинстве детских садов России и других стран на постсоветском пространстве. Суть метода: обучение на предметах (палочках, пальцах и пр.). Малыши учатся поэтапно. Сначала простой счет, потом сравнение (изучение понятий «больше», «равно», «меньше»), потом счет наоборот, вычислительные действия.

Польза метода А. М. Леушиной:
  • развитие речи (малыш вслух комментирует свои действия);
  • развитие моторики при работе со счетным материалом;
  • возможность учиться вне школьных (детсадовских) стен: на прогулке, дома, в дороге.
Недостатки:
  • метод не развивает скорость мышления;
  • дети усваивают науку с разной скоростью, поэтому отстающим трудно, а тем, кто легко и быстро проходит каждый этап обучения, становится неинтересно.

Способ быстрого счета в уме Гленна Домана

Гленн Доман создал целую систему обучения малышей при помощи карточек. Ее используют в занятиях многие современные развивающие курсы для детей. Но с таким же успехом учить малышей счету могут и родители.

Для изучения устного счета используются карточки, на которых изображено разное количество точек. На начальном этапе родители (педагог) показывают малышу карточки, на которых не более 5 точек. Потом на демонстрационных карточках точек становится все больше. Таким способом можно научить ребенка считать до 100, не привязываясь к изображению цифр.

Плюсы метода:
  • не нужно проговаривать свои действия;
  • дети учатся считать посредством визуального восприятия;
  • метод дает малышу возможность оперировать большими числами.
Минусы:
  • пассивное участие малыша в учебном процессе;
  • не подходит для подвижных, неусидчивых детей;
  • для лучшего усвоения материала требуется многократное повторение тренировок в течение дня (не все родители могут себе позволить уделять столько времени и сил занятиям);
  • расходные материалы дорогостоящие, а самостоятельное изготовление карточек слишком трудоемко;
  • метод основан на использовании памяти, при этом не развивается логика, а полученные знания не закрепляются практической работой.

Уроки ментальной арифметики – актуальный метод быстрого счета в уме для детей

В России ему дала жизнь школа ментальной арифметики Соробан ®. Философия, фундамент обучения – занятия со счетным инструментом под названием абакус. Родина счетной доски – Япония, но прототипом для создания абакуса послужили древние китайские счеты. Получается, что уже три тысячелетия назад люди практиковались в ментальной математике, но не знали о ее пользе для интеллекта.

Какие преимущества дает метод?

  1. Скоростной устный счет – навык, которого не дает больше ни один метод быстрого счета в уме.
  2. Развитие подвижности пальцев рук, что влияет на развитие речи.
  3. Тренировка навыка концентрации, феноменальной способности к запоминанию.
  4. Развитие в одно время образного мышления (визуализация счетов) и логики.
  5. Применение полученных навыков для решения задач разной сложности. Развитие самостоятельности в принятии решений.
  6. Доступность метода не только для дошколят, но и для младших школьников. Студентами школы устного счета Соробан ® могут быть дети 5 -11 лет (другие методы предназначены только для дошкольников).
  7. Активное участие ребенка в обучении.
  8. Индивидуальный подход – дает возможность заинтересовать в обучении каждого ребенка, не мешает малышам учиться в комфортном для них темпе.
  9. Ощутимые результаты, которые помогают мотивировать учеников на дальнейшие успехи.

Ментальная арифметика – особенный метод быстрого счета в уме еще и потому, что в перспективе она влияет положительно на развитие ребенка и в других направлениях. Ученик начинает хорошо читать и усваивать материал, лучше справляется с серьезными нагрузками, развивается в творчестве и разных сферах применения интеллекта.

Читать ещё:

Тест. Как понять, когда ребенок готов к школе?

Тест: готов ли ребенок к 1 классу

Хочешь стать успешным – научись считать!

Видео про Ментальную арифметику в Соробан ®

Соробанята поздравляют всех с 1 сентября

Ментальная арифметика за 10 минут. Соробан в России.

Соробан — школа в России. Видео-обзор нового приложения

soroban.ru

Приемы быстрого счета без калькулятора

Хоть и считается, что математика наводит ужас на значительную часть населения, но деньги считать умеют все. И вот как раз влет это умеют делать люди, далекие от математики.

Помнится, бабушка моего мужа показывала ему на пальцах таблицу умножения на 9. Никакого образования, только огромная практика торговли редиской и клубникой на рынке!

Так вот сегодня я предлагаю вам несколько интересненьких приемов устного счета. Ведь сколько бы замечательных гаджетов (телефоны, смартфоны, айподы и айпады, ай, да чего там…) своя голова она всегда лучше.

Итак, читаем, тут же проверяем и запоминаем приемы вычисления в уме.

1. Умножение на 11

Умножать на 11 чуть сложнее, чем умножать на 10. Закономерность здесь такая:

53 х 11 = 583 Шаг 1 — Складываем две цифры двузначного числа: 5 + 3 = 8

Шаг 2 — Помещаем результат между двумя числами двузначного числа: 583

59 х 11 = 649 Шаг 1 — 5 + 9 = 14 Шаг 2 — Перекидываем единицу налево, если сумма на предыдущем шаге оказалась больше 9: 5 + 1 = 6 (справа остается второй символ, в данном случае это четверка)

Шаг 3 — На первый символ мы единицу уже перекинули, получили 6. Далее у нас осталась 4, которую ставим в центр, и дописываем 9: 649

2. Быстрое возведение в квадрат

Этот прием поможет быстро возвести в квадрат двузначное число, которое заканчивается на 5.

85 х 85 = 7225 Шаг 1 — Умножаем первую цифру на первую цифру, увеличенную на единицу: 8 x (8 + 1) = 72

Шаг 2 — Дописываем к получившемуся результату 25: 7225

45 x 45 = 2025 Шаг 1 — 4 х (4 + 1) = 20

Шаг 2 — 2025

3. Умножение на 5

Большинство людей очень просто запоминает таблицу умножения на 5, но, когда приходится иметь дело с большими числами, сделать это становится сложнее. Или нет? Этот прием невероятно прост.

Возьмите любое число, разделите на 2 (другими словами, поделите пополам). Если в результате получилось целое число, припишите 0 в конце. Если нет, не обращайте внимание на запятую и в конце добавьте 5.

Это срабатывает всегда: 2682×5 = (2682 / 2) & 5 или 0 2682 / 2 = 1341 (целое число, поэтому добавьте 0) 13410 Давайте попробуем другой пример: 5887×5 2943,5 (дробное число, пропустите запятую, добавьте 5)

29435

4. Умножение на 9

Это просто. Чтобы умножить любое число от 1 до 9 на 9, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например 9×3 – загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9×3 – это 2), затем посчитайте после загнутого пальца (в нашем случае – 7). Ответ – 27.

5. Умножение на 4

Это очень простой прием, хотя очевиден лишь для некоторых. Хитрость в том, что нужно просто умножить на 2, а затем опять умножить на 2: 58×4 = (58×2) + (58×2) = (116) + (116) = 232

6. Подсчет чаевых

Если вам нужно оставить 15% чаевых, есть простой способ сделать это.

Высчитайте 10% (разделите число на 10), а потом добавьте получившееся число к его половине и получите ответ: 15% от $25 = (10% от 25) + ((10% от 25) / 2)

$2.50 + $1.25 = $3.75

И, как следствие):  чтобы умножить число на 1,5 нужно к исходному числу прибавить его половину. Например,

34*1,5 = 34+17=51

125*1,5= 125+62,5=187,5

7. Сложное умножение

Если вам нужно умножать большие числа, причем одно из них — четное, вы можете просто перегруппировать их, чтобы получить ответ: 32×125 все равно, что: 16×250 все равно, что: 8×500 все равно, что:

4×1000 = 4,000

8. Деление на 5

На самом деле делить большие числа на 5 очень просто. Все, что нужно,— просто умножить на 2 и перенести запятую: 195 / 5 Шаг1: 195×2 = 390 Шаг2: Переносим запятую: 39,0 или просто 39. 2978 / 5 Шаг1: 2978×2 = 5956

Шаг2: 595,6

9. Вычитание из 1000

Чтобы выполнить вычитание из 1000, можете пользоваться этим простым правилом: Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10:

1000-648

Шаг1: от 9 отнимите 6 = 3 Шаг2: от 9 отнимите 4 = 5 Шаг3: от 10 отнимите 8 = 2

Ответ: 352

И, напоследок, несколько математических трюков:

Интересные результаты:

1 х 1 = 1 11 х 11 = 121 111 х 111 = 12321 1111 х 1111 = 1234321 11111 х 11111 = 123454321 111111 х 111111 = 12345654321 1111111 х 1111111 = 1234567654321 11111111 х 11111111 = 123456787654321

111111111 х 111111111 = 12345678987654321

1 х 9 + 2 = 11 12 х 9 + 3 = 111 123 х 9 + 4 = 1111 1234 х 9 + 5 = 11111 12345 х 9 + 6 = 111111 123456 х 9 + 7 = 1111111 1234567 х 9 + 8 = 11111111 12345678 х 9 + 9 = 111111111

123456789 х 9 + 10 = 1111111111

9 х 9 + 7 = 88 98 х 9 + 6 = 888 987 х 9 + 5 = 8888 9876 х 9 + 4 = 88888 98765 х 9 + 3 = 888888 987654 х 9 + 2 = 8888888 9876543 х 9 + 1 = 88888888

98765432 х 9 + 0 = 888888888

1 х 8 + 1 = 9 12 х 8 + 2 = 98 123 х 8 + 3 = 987 1234 х 8 + 4 = 9876 12345 х 8 + 5 = 98765 123456 х 8 + 6 = 987654 1234567 х 8 + 7 = 9876543 12345678 х 8 + 8 = 98765432

123456789 х 8 + 9 = 987654321

Любимая цифра.

Предложите  задумать свою любимую цифру. А теперь выполните умножение (на калькуляторе) числа 15873 на любимую цифру, умноженную на 7. Например, если любимая цифра 5, то умножить нужно на 35. Получится произведение, записанное только любимой цифрой.

Возможен и второй вариант: умножить число 12345679 на любимую цифру, умноженную на 9, в нашем случае это число 45.

Объяснение этого фокуса достаточно простое: если умножить 15873 на 7, то получится 111111, а если умножить 12345679 на 9, то получится 111111111.

Угадать возраст.

Умножаем число своих лет на 10, затем любое однозначное число умножить на 9,  из первого произведения вычесть второе и сообщить полученную разность. В этом числе “фокусник” должен цифру единиц сложить с цифрой десятков – получится число лет.

Всегда девятка

Предложите кому-нибудь написать число из трех разных цифр, под ним — написать число из этих же цифр, но в обратном порядке. Затем вычесть меньшее из большего. Когда зритель это сделает, скажите ему, что в середине числа стоит девятка.

Секрет фокуса: Вы будете правы, потому что девятка всегда будет в середине независимо от того, какие цифры написаны.

Рассказать друзьям Наверх

anisim.org


Смотрите также

Рубрика:  Разное