Как быстро решать примеры


Как научиться быстро считать примеры

Умение быстро решать примеры требуется не только в школе или в вузе, но и в обыденных ситуациях. Например, при расчете общей стоимости товаров в магазине или планировании семейного бюджета.

Инструкция

Запомните, что для того чтобы научиться быстро решать примеры письменно или в уме, нужна постоянная практика. Купите сборники примеров по математике и ежедневно решайте по два-три десятка. Не торопитесь и не переходите сразу к следующей теме, если еще не освежили в памяти предыдущую. Если примеров недостаточно, складывайте, вычитайте, умножайте и делите первые попавшиеся цифры. Даже если это будут цифры номеров рядом стоящих автомобилей на стоянке возле дома. Обязательно записывайте на первых порах все свои вычисления, а после – сверяйтесь с калькулятором. Если вы нашли ошибку, решите этот пример еще раз для того чтобы выяснить, где именно вы допустили погрешность в вычислениях. Постоянно повторяйте таблицу умножения. Только тогда, когда вы снова с легкостью будете оперировать однозначными числами, переходите к двузначным. Самый простой способ – разделить множимое и множитель на десятки и единицы. Например, 45×56 = 45×50 + 45×6 = 40×50 + 5×50 + 40×6 + 5×6 = 2520. При достаточной тренировке вы сможете решать эти примеры не только письменно, но и в уме. Главное, не перепутайте цифры и соблюдайте порядок действий. Тот же способ используйте и при возведении двузначных чисел в квадрат. Чтобы научиться быстро складывать и вычитать многозначные цифры в уме, всегда ориентируйтесь на числа, кратные 10, 100, 1000 и т.д. Например, если вы хотите сложить 3723 и 675, то вам будет достаточно подсчитать, сколько первому числу «не хватает» до «круглого» - 4000. В данном случае это 277. Далее: 675 – 277 = 398. Таким образом, получится, что итоговой суммой будет 4398. Если вы хотите из 3723 вычесть 675, подсчитайте, сколько второму числу «не хватает» до «круглого» - 700. То есть: 700 - 675 = 25. Вычтите из первого числа 700 и потом прибавьте 25. Итог: 3048.

Источники:

  • как научить ребенка складывать двухзначные числа

Распечатать

Как научиться быстро считать примеры

www.kakprosto.ru

Как научиться быстро считать в уме? — Meduza

Минимальные навыки счета, чувство числа — такой же элемент общечеловеческой культуры, как грамотное письмо и речь, владение иностранным языком, базовое представление об искусстве и окружающем мире.

Кроме того, когда вы легко считаете без подручных средств, вы чувствуете совершенно другой уровень управления реальностью — вы заранее знаете, сколько сдачи вам дадут в магазине или стоит ли набиваться всемером в лифт грузоподъемностью 400 килограммов.

Подумайте и о том, что калькулятор и действия в столбик — это же такая разновидность магии. Скорее всего, вы не понимаете, как это работает, и вынуждены просто доверять им. А когда вы хорошо понимаете, как устроены математические операции и можете их воспроизвести «руками», ваше чувство контроля (и уверенности в себе) получает серьезный бонус.

И наконец, устный счет развивает ваши ментальные способности: внимание, память, концентрацию, переключение между несколькими потоками мышления, а также может послужить средством для медитации или отвлечения от грустных мыслей.

Конечно, нет. В сети полно мобильных приложений, которые предложат вам тренировку математических навыков на любой вкус.

При выборе учтите, что хорошее приложение, как минимум, должно обладать достаточно гибкими настройками сложности и вести статистику решенных вами заданий.

Попробуйте эти приложения под iOS и Android или поищите альтернативные варианты в App Store и Google Play.

Основных математических действий всего четыре — сложение, вычитание, умножение и деление. У каждого действия есть свои особенности, но они не сложные. Надо один раз разобраться, а потом тренироваться минут по 5−10 в день, и очень скоро вы почувствуете, что считаете лучше. Скорее всего, за два-три месяца вы выйдете на достаточно приличный уровень, который можно будет поддерживать эпизодическими тренировками.

Начните с самого простого уровня — сложения однозначных чисел, и доведите его до совершенства: 99% правильных ответов, на каждый ответ 1−2 секунды. Для решения примеров «с переходом через 10» попробуйте использовать следующую технику — «Опора на десяток».

Допустим, вам нужно сложить 8 и 7.

1) Спросите себя, сколько числу 8 не хватает до 10 (это 2).

2) Представьте 7 как сумму 2 и какого-то второго кусочка (это 5).

3) Прибавляйте к 8 сначала ту часть числа 7, которой недоставало до 10, а потом тот второй кусочек — получится 10 и 5, и это, конечно, 15.

Здесь самый важный принцип — это сложение одинаковых разрядов друг с другом. Разбив оба числа на «разрядные части», начните складывать со старших разрядов — тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами. То, что получится, при необходимости укрупняйте и снова считайте все вместе.

Например, как сложить 456 и 789?

1) 456 состоит из трех разрядных частей — 400, 50 и 6.

789 тоже разбивается на три разрядные части — это 700, 80 и 9.

2) Складываем сотни с сотнями: 400+700 = 1100, десятки с десятками: 50+80 = 130, единицы с единицами: 6+9 = 15.

3) Укрупняем, разбивая на удобные части, снова группируем и складываем одинаковые разряды: 1100+130+15 — это 1100+100+30+10+5, то есть, 1200+40+5 = 1245.

Поправка. При сложении разрядов мы перепутали единицы и к 6 прибавили 8 вместо 9. В итоге сумма тоже оказалась неправильной — 1244 вместо 1245. Приносим извинения за ошибку, и не повторяйте ее — внимательно следите за числами, особенно в устном счете!

И здесь надо начинать с базового уровня — вычитания однозначного числа из чисел первого и второго десятка — и довести этот навык до совершенства. Как и в случае сложения, проблемы обычно возникают с вычитанием «с переходом через 10». И здесь поможет аналогичный способ «опоры на десяток».

Допустим, нам нужно из 12 вычесть 8.

1) Спросим себя, сколько нужно отнять от 12, чтобы получилось 10 (это 2).

2) Будем из 12 вычитать 8 по частям — сначала вычтем эту 2, а потом все остальное. А остальное — это сколько? (это 6).

3) После вычитания 2 из 12 мы получили 10, и нужно вычесть еще 6, получится 4. Готово!

Не особенно. Важно только не путать технику вычитания с техникой сложения. При сложении нам было удобно разбивать каждое из чисел на разрядные части, а здесь мы разбиваем только то число, которое вычитаем.

Итак, допустим, нам нужно вычесть 512−259.

1) Число 259, которое мы вычитаем, состоит из трех разрядных частей — 200, 50 и 9. Их-то по очереди мы и вычтем.

2) 512−200 — вычитание сотен никак не затрагивает десятков и единиц числа 512, влияет только на сотни, так что результат будет такой — 312.

3) Из того, что получилось после вычитания сотен, теперь вычтем десятки, 312−50.

Это похоже на вычитание через десяток. Вычтем из 312 сначала 10 до целых сотен (единицы не будут затронуты), получим 302. А потом вычтем все остальное (всего нужно было вычесть 50, 10 уже вычли, осталось вычесть 40), получается 262.

4) Осталось вычесть единицы: 262−9.

Чистый переход через десяток — вычитаем сначала 2, получим 260, а потом вычитаем остальную часть, 7, получаем 260−7 = 253. Вот и ответ.

Начнем с умножения однозначных чисел. Для начала нужно вспомнить, что умножение — это когда несколько раз складывают одно и то же. Например, умножить 4 на 7 означает сложить четыре семерки. Пользуясь техникой сложения, мы можем легко посчитать — две семерки, 7 и 7, будет 14, если еще добавить третью 7, получится 21, и, добавляя последнюю, четвертую семерку, в результате получим 28.

Постепенно в результате тренировок вы запомните удобные вам опорные значения умножения и с их помощью сможете быстрее вычислять соседние. Например, если нужно умножить 6 на 7 (то есть, сложить шесть семерок), а вы помните, что 5 умножить на 7 (то есть, сложить пять семерок) будет 35, то чтобы получить итоговый результат, нужно просто добавить шестую семерку — получится 42.

Самым сложным примером в таблице умножения считается 7∙8. Для его запоминания есть неплохое мнемотехническое правило «пять шесть семь восемь», которое означает 56 = 7∙8.

Разберем на примере. Допустим, нам нужно умножить 468 на 6.

1) 468 состоит из 400, 60 и 8, и все это нужно умножить на 6. Что ж, по отдельности эти задачи не сложнее умножения однозначных чисел.

2) Идем от старшего разряда к младшему: 400∙6 = 2400 (поскольку 400 в 100 раз больше, чем 4, то и результат 400∙6 будет в 100 раз больше, чем результат 4∙6).

Соответственно, 60∙6 = 360, а 8∙6 = 48.

3) А теперь, как при сложении, складываем все это вместе, группируя одинаковые разряды:

(2000+400)+(300+60)+(40+8) = [перегруппируем] =

= 2000+(400+300)+(60+40)+8 = [сложим одинаковые разряды] =

= 2000+700+100+8 = [сгруппируем и сложим одинаковые разряды] =

= 2000+800+8 = [дальше укрупнять нечего, получаем ответ] = 2808.

Для обычного человека это уже высший пилотаж! Если вы освоили умножение двузначных, считайте, что вы приняты в мир элиты устного счета. Но на самом деле, и тут ничего принципиально сложного нет, просто выше нагрузка на краткосрочную память (заодно и потренируем ее).

Итак, например, умножим 78 на 56. Это означает, что нам нужно число 78 сложить («взять») 56 раз.

1) Эти 56 раз можно разбить на этапы — сначала 78 сложим 50 раз, потом 6 раз, а потом объединим результаты.

2) Число 78 сложить 50 раз несложно — это в 10 раз больше, чем сложить его 5 раз. 78∙5 = 70∙5+8∙5 = 350+40 = 390. А значит, 78∙50 = 3900, запомним это число.

3) Теперь посчитаем 78∙6 = 70∙6+8∙6 = 420+48 = 468.

4) Ну а теперь сложим вместе оба результата: 3900+468 = 3000+900+400+60+8 = 3000+1300+60+8 = 4368. Вуаля!

Поправка. На заключительном этапе при сложении 3900 и 468 мы неправильно разбили второе число на разряды — забыли про 60. В итоге в сумме получилось 4308. Приносим извинения за ошибку, и не повторяйте ее — нельзя терять в устном счете слагаемые.

Да, мы на финишной прямой. И снова начнем с самого простого уровня: деления на однозначное число тех чисел, которые знакомы нам по умножению однозначных.

Итак, что же такое деление? По сути, это «обратная» операция к умножению.

Например, разделить 56 на 7 — значит подобрать такое число, что если его умножить на 7, то получится 56. Поскольку вы к этому моменту уже хорошо ориентируетесь в таблице умножения, то наверняка вспомните, что именно 8, умноженное на 7, дает 56. Значит, искомое число — это 8, 56:7 = 8.

И так всегда — вспоминайте, какое число при умножении дает нужный результат — это и есть то число, которое вам нужно.

Давайте разделим 6144 на 8. Наш способ — «отрезать» от исходного числа максимальные «круглые» части, каждая из которых будет гарантированно делиться на 8 по таблице умножения.

1) Выделим из 6144 как можно большую часть, которая делится на 8 по таблице умножения. Это будет 5600, ведь 56 делится на 8, а следующее число, которое делится на 8 — это уже 64, что нам не подходит, так как 6400 больше, чем 6144. Прекрасно, 6144 — это 5600 и 544 (тут нам пригодился навык вычитания).

По ходу дела будем делить:

6144:8 = [выделяем максимальную удобную круглую часть] =

= (5600+544):8 = [выделенную часть делим на 8, а со второй поработаем на следующем шаге] =

= 700+544:8. 

700 запомним как частичный результат, а сами займемся делением 544:8.

2) Аналогично, из числа 544 самая большая часть, которую можно удобно разделить на 8 по таблице умножения, это 480 (ведь 48 делится на 8, а следующее число — 56 — нам не подходит, т. к. 560 > 544). Итак, 544 = 480+64.

Продолжаем деление:

544:8 = [выделяем максимальную удобную круглую часть] =

= (480+64):8 = [выделенную часть делим на 8, а со второй поработаем на следующем шаге] =

= 60+64:8.

60 добавим к 700, 700+60 = 760 — запомним это как вторую часть результата и перейдем к последнему делению, 64:8.

3) Оставшийся кусочек, 64, тоже делится на 8 по таблице умножения, 64:8 = 8.

Соответственно, полный результат деления — это 760+8=768. Все!

Техника деления на двузначное число — самая разнообразная, непохожая ни на что, изысканная. Познакомимся с ней на примере 5148:66.

1) Подгадаем, в каком десятке лежит наш результат. Напомним, что 5148:66 означает: мы ищем число, которое при умножении на 66 даст 5148. Будем использовать технику «пристрелки». 

Просто наугад попробуем число 20 как возможного кандидата. 20∙66 = 1320, это раза в 4 меньше, чем 5148, которое нам нужно. 

В 4 раза больше, чем 20 — это 80, попробуем его. 80∙66 = 5280, получилось больше, чем нужное 5148, но немного, скорее всего, это «верхний» десяток. 

Проверим для надежности 70, предыдущий перед 80 десяток. 70∙66 = 4620, это как раз меньше 5148, отлично! Значит, число, которое мы ищем, лежит между 70 и 80.

2) Воспользуемся математическим законом о последней цифре результата умножения двух чисел.

Оказывается, она всегда совпадает с последней цифрой результата умножения последних цифр этих чисел (попробуйте подумать, почему это так). Например, на какую цифру закончится 1234∙5678? На ту же, что и 4∙8, то есть на 2 (4∙8 = 32). 

Поэтому, если мы ищем число, которое при умножении на 66 даст 5148, то чтобы гарантировать эту 8 на последнем месте, искомое число может заканчиваться только либо на 3, либо на 8 (3∙6 = 18, 8∙6 = 48).

3) С такими окончаниями между 70 и 80 у нас два всего кандидата — 73 и 78. 

5148 явно ближе к 5280, поэтому сперва проверим 78.

78∙66 = 78∙60+78∙6 = 4680+468 = 5000+148 = 5148, ура! 

(Ну а если бы результат не сошелся, то мы бы проверили второе число, и оно бы уже точно подошло).

Вот, в общем-то, и все способы, которые достаточно знать для тренировки уверенного счета в пределах 10000 (а умение работать в уме с большими числами, пожалуй, уже выходит за рамки необходимого общего развития).

Наверняка вы также столкнетесь с другими приемами, т. н. «хитростями» быстрого счета, но не торопитесь увлекаться ими. Кроме того, помните, что регулярность важнее интенсивности — старайтесь заниматься на тренажере каждый день по 5−10 минут, больше не нужно, иначе велик риск «перегореть» и забросить. 

В процессе занятия никуда не торопитесь — ловите свой ритм, делайте упор на правильность ответов, а не на скорость, скорость придет потом.

Обязательно пробуйте проговаривать свои действия вслух, особенно на первых порах — у вас будет шанс почувствовать, как все это похоже на стихи, да и решать так будет проще.

И не расстраивайтесь, если что-то не выходит — дорогу осилит идущий, и рано или поздно у вас точно все получится.

meduza.io

22 простых способа научиться быстро считать в уме

Добрый день! Много вопросов поступает от школьников по разным предметам. Сегодня поговорим о том, как быстро считать в уме, чтобы легко решать разные примеры и задачи по математике.

Материал также будет полезен взрослым, ведь нам тоже приходится немало высчитывать в уме в быту. А еще это улучшает мозговую активность, концентрацию, внимание и память.

Читаем, изучаем, учимся легко и интересно.

Надеюсь, что вам будет понятно и обязательно пригодится на деле. Жду ваших комментариев, пальчиков вверх и репостов!

Вступление

В современном мире с множеством сверх прогрессивных девайсов, счет в уме не утратил своей актуальности.

Как научиться быстро считать в уме? Предложенные в данной статье методики помогут вам развить феноменальный талант быстрого счета.

Три составляющих успешного обучения

  • Способности. Для того чтобы научиться считать в уме, следует уметь концентрировать внимание на поставленной задаче и удерживать в памяти сложные числа.
  • Формулы. Чтобы легко и просто производить вычисления в уме, следует запомнить основные математические формулы.
  • Практика. Частые тренировки позволят развить и усовершенствовать навык.

Учимся устно умножать на 11

Существует несколько простых способов умножения числа на 11.

Способ 1

При умножении 2-значного числа на 11, раздвинем цифры множителя.

Например (54 * 11): 5 _ 4 * 11=…

Теперь суммируем единицы и десятки, а полученный результат записываем в ответе: 5 (5+4) 4 * 11 = 5 (9) 4 = 594

Например (89 * 11): 8 _ (8+9) _9 = 8 _ (17) _ 9 = _ (8+1) _ 79 = 979

Способ 2

При умножении на 11 разложим число 11 на сумму: 10+1, и произведем умножение частей.

Например: 12 * 11 = 12 * (10+1) = 120 + 12 = 132

Так же и с 3-значными числами: 114 * 11 = 114 * (10+1) = 1140 + 114 = 1254

Умножаем на 9 и 11

Примеры: 15 * 9 = 15 * 10 – 15 = 150 — 15 = 135 57 * 11 = 57 * 10 + 57 = 570 + 57 = 627

Возведение в квадрат числа, заканчивающегося на 5

Достаточно простая методика. Умножаем десяток на самого себя +1, и дописываем «25» в конце.

Например (35 * 35): 35 * 35 = 3 * (3+1)_25 = 1225

Устное умножение на 5, 25, 50, 125

Умножить на 5 числа до 10-ти не составляет проблем

Давайте научимся так же легко умножать двузначные и трехзначные числа.

Способ 1

Разделим наш множитель на «2». Получилось целое число? Значит, добавим к нему в конце «0», если число поровну не делится – отбрасываем остаток и добавляем «5» в конце.

Например (1482 * 5): 1482 * 5 = (1482/2) _ (+0 или +5) = 741 _(+0) = 7410 – число делится на 2 без остатка

2269 * 5 = (2269/2) _ (+0 или +5) = 1134.5 _ (+5) = 11345 – число делится на 2 с остатком

Способ 2

Умножая число на 5, 25, 50, 125 можно использовать следующие формулы: А * 5 = А * 10 / 2 А * 50 = А * 100 / 2 А * 25 = А * 100 / 4

А * 125 = А* 1000 / 8

Примеры: 44 * 5 = 44 * 10 / 2 = 440 / 2 = 220 24 * 50 = 24 * 100 / 2 = 2400 / 2 = 1200 26 * 25 = 26 * 100 / 4 = 2600 / 4 = 650

54 * 125 = 54 * 1000 / 8 = 54000 / 8 = 6750

Учимся устно умножать на 4

Достаточно простой метод, не требующий особых усилий.

Умножаем число на «2», а потом полученный результат снова умножаем на «2».

Например: 27 * 4 = 27 * 2 * 2 = 54 * 2 = 108

Вычисляем в уме 15 % от числа

Находим 10% от числа и добавляем ½ от 10%.

Например: 15% от 664 = (10% ) + (10% / 2) = 66.4 + 33.2 = 99.6

Умножаем в уме большие числа, одно из которых четное

Например: 48 * 125 = 24 * 250 = 12 * 500 = 6 * 1000 = 6000

Учимся делить на 5, 50, 25

Один простой прием поможет вам быстро делить в уме: умножим наше число на «2» и переместим запятую на одну цифру назад.

145 / 5 = 145 * 2 = 290 (смещаем запятую) = 29 1200 / 5 = 1200 * 2 = 2 400 (смещаем запятую) = 240

При делении на 50, 25, удобно воспользоваться формулами:

А / 50 = А * 2 / 100 А / 25 – А * 4 / 100

Примеры: 2350 / 50 = 2350 * 2 / 100 = 4700 / 100 = 47

2600 / 25 = 2600 * 4 / 100 = 10400 / 100 = 104

Вычитаем из 1000

Для того, чтобы вычесть число из 1000, отнимаем каждую цифру числа от «9», а последнюю цифру отнимаем от 10.

Например: 1000 – 248 = (9-2) _ (9-4) _ (10-8) = 752

Умножаем простые числа

Пример, умножим 7 на 8: 3 __ 2 7 8 8 – 3 = 5 _ 3 * 2 = 6

Итог: 56

Умножаем числа от 10 до 20

Для того чтобы быстро в уме умножать числа от 10 до 20-ти, следует знать одну хитрость: к одному числу прибавим единицы другого, а сумму умножим на 10, к полученному результату добавим произведение единиц.

Пример: 13 * 15 = (13 + 5) * 10 + 3 * 5 = 180 + 15 = 195

Складываем и вычитаем натуральные числа

1. Если слагаемое увеличить на некоторое число, то это же число следует вычесть из полученной суммы.

Например: 650 + 346 = (650 + 346 + 4) – 4 = (650 + 350) – 2 = 1000 – 2 = 998

2. Если одно слагаемое уменьшить на некоторое число, а ко второму слагаемому это же число добавить, то сумма не изменится.

Например: 335 + 765 = (335 + 5) + (765 — 5) = 340 + 760 = 1100

3. Если к уменьшаемому и вычитаемому добавить одно и то же число, результат не изменится.

Например: 225 — 339 = (225 + 5) — (339 + 5) = 230 — 344 = 114

Умножаем числа с одинаковым количеством десятков, сумма единиц которых = 10

Например: 302 * 308 = .. 1). 30 * (30 + 1) = 900 + 30 = 930 2). 2 * 8 = 16

Умножаем на число, состоящее из цифр 9

Как умножить на число 9, 99, 999?

Для этого просто добавим недостающие единицы и произведем вычисление.

Пример: 154 * 99 = 154 * (100 — 1) = 15400 — 154 = 15246

Складываем близкие по величине числа

Производим вычисление ряда чисел, близких по величине

Их можно разложить, и сложить частями.

Например: 19 + 22 + 23 + 21+ 24 + 17=…

Разложим слагаемые: 19 = 20 — 1 22 = 20 + 2 23 = 20 + 3 21 = 20 + 1 24 = 20 + 4

17 = 20 -3

Итог: 20 * 6 + (2-1+3+1+4-3) = 120 + 6 = 126

Надеемся, что наши советы помогут вам освоить приемы быстрого счета в уме. Следует помнить, что теория – это лишь 20 % успеха. Остальные 80% — ваше желание и практика.

[Источник: http://domznaniy.ru/]

Несколько полезных советов

Зачем нужен устный счет, если на дворе 21 век, и всевозможные гаджеты способны едва ли не молниеносно производить любые арифметические операции? Можно даже не тыкать в смартфон пальцем, а дать голосовую команду – и немедленно получить правильный ответ. Сейчас это успешно проделывают даже школьники младших классов, которым лень самостоятельно делить, умножать, складывать и вычитать.

Но у этой медали есть и обратная сторона: ученые предупреждают, что если мозг не тренировать, не нагружать работой и облегчать ему задачи, он начинает лениться, его мыслительные способности снижаются. Точно так же без физических тренировок слабеют и наши мышцы.

О пользе математики говорил еще Михаил Васильевич Ломоносов, называющий ее прекраснейшей из наук: «Математику уже за то любить надо, что она ум в порядок приводит».

Устный счет развивает внимание, память, быстроту реакции. Недаром появляются все новые и новые методики быстрого устного счета, предназначенные и для детей, и для взрослых. Одна из них – японская система устного счета, в которой используются древние японские счеты «соробан».

Любопытно, что всего за два года ученики таких школ (сюда принимают детей в возрасте 4–11 лет) учатся совершать арифметические действия с 2-значными, а то и 3-значными цифрами. Малыши, не знающие таблицы умножения, здесь умеют умножать. Они складывают и вычитают большие числа, не записывая их столбик. Но, конечно же, цель обучения – это сбалансированное развитие правого и левого полушарий головного мозга.

Овладеть устным счетом можно и с помощью задачника «1001 задача для умственного счета в школе», составленного еще в 19 веке сельским учителем и известным педагогом-просветителем Сергеем Александровичем Рачинским. В пользу этого задачника говорит тот факт, что он выдержал несколько изданий. Эту книгу можно найти и скачать в Интернете.

Люди, практикующиеся в быстром счете, рекомендуют книгу Якова Трахтенберга «Система быстрого счета». История создания этой системы весьма необычна. Чтобы выжить в концлагере, куда его отправили нацисты в 1941 г., и не утратить ясность ума, цюрихский профессор математики занялся разработкой алгоритмов математических действий, позволяющих быстро считать в уме. А после войны написал книгу, в которой система быстрого счета изложена настолько понятно и доступно, что она и сейчас пользуется спросом.

Хорошие отзывы и о книге Якова Перельмана «Быстрый счет. Тридцать простых примеров устного счета». Главы этой книге посвящены умножению на однозначное и двузначное число, в частности умножению на 4 и 8, 5 и 25, на 11/2, 11/4, ѕ, делению на 15, возведению в квадрат, вычислениям по формуле.

Простейшие способы устного счета

Быстрее овладеют этим навыком люди, обладающие определенными способностями, а именно: способностью к логическому мышлению, умением сконцентрироваться и сохранять в краткосрочной памяти несколько образов одновременно.

Ну и, конечно же, не обойтись без регулярных тренировок!

В числе самых распространенных приемов быстрого счета следующие:

Умножение двузначного числа на однозначное.

Умножить двузначное число на однозначное проще всего, разложив его на две составляющие. Например, 45 — на 40 и 5. Далее каждую составляющую умножаем на нужное число, к примеру на 7, отдельно. Получаем: 40 × 7 = 280; 5 × 7 = 35. Затем получившиеся результаты складываем: 280 + 35 = 315.

Умножение трехзначного числа.

Умножать в уме трехзначное число также намного проще, если разложить его на составляющие, но представив множимое так, чтобы с ним легче было производить математические действия. Например, нам нужно умножить 137 на 5.

Представляем 137 как 140 − 3. То есть получается, что мы теперь должны умножить на 5 не 137, а 140 − 3. Или (140 − 3) х 5.

Ну а дальше каждую часть умножаем отдельно: 140 × 5 − 3 × 5 = 700 − 15 = 685.

Зная таблицу умножения в пределах 19 х 9, можно сосчитать еще быстрее. Раскладываем число 137 на 130 и 7. Далее умножаем на 5 сначала 130, а затем 7, и результаты складываем. То есть 137 × 5 = 130 × 5 + 7 × 5 = 650 + 35 = 685.

Разложить можно не только множимое, но и множитель. Например, нам нужно умножить 235 на 6. Шесть мы получаем, умножив 2 на 3. Таким образом, 235 сначала множим на 2 и получаем 470, а затем 470 умножаем на 3. Итого 1410.

Это же действие можно произвести иначе, представив 235 как 200 и 35. Получается 235 × 6 = (200 + 35) × 6 = 200 × 6 + 35 × 6 = 1200 + 210 = 1410.

Таким же образом, раскладывая числа на составляющие, можно выполнять сложение, вычитание и деление.

Умножение на 10-ть.

Как умножать на 10, известно всем: просто приписать к множимому нуль. Например, 15 × 10 = 150. Исходя из этого, не менее просто умножать и на 9. Сначала к множимому припишем 0, то есть умножим его на 10, а затем от получившегося числа отнимем множимое: 150 × 9 = 150 × 10 = 1500 − 150 = 1 350.

Умножение на 5-ть.

Легко умножать и на 5. Следует всего лишь умножить нужно число на 10, а получившийся результат разделить на 2.

Умножение на 11-ть.

Интересно умножать двузначные числа на 11. Возьмем, к примеру, 18. Мысленно раздвинем 1 и 8, и между ними впишем сумму этих чисел: 1 + 8. У нас получится 1 (1 + 8) 8. Или 198.

Умножение на 1,5.

При необходимости умножить какое-нибудь число на 1,5 делим его на два и прибавляем получившуюся половинку к целому: 24 × 1,5 = 24 / 2 + 24 = 36.

Это лишь самые простые способы устного счета, с помощью которых мы можем тренировать свой мозг в быту. Например, подсчитывать стоимость покупок, стоя в очереди в кассу. Или же совершать математические действия с цифрами на номерах проезжающих мимо машин. Те же, кто любит «играться» с цифрами и хочет развить свои мыслительные способности, могут обратиться к книгам вышеупомянутых авторов.

[Источник: https://bbf.ru/]

Дальше — интереснее!

Не все мы выдающиеся математики. На кого-то эта наука наводит ужас при одном ее упоминании. Возможно, следующие советы помогут вам и вы сможете быстрее делать математические вычисления в уме.

Умножение на 11

Берем двузначное исходное число и мысленно представляем промежуток между двумя этими цифрами (для примера возьмем число 52): 5_2

Теперь складываем эти два числа, записав их еще и по середине: 5_(5+2)_2

Ответ: 572.

Если при сложении чисел в скобках получается двузначное число, то вторую цифру запомните, а вторую прибавьте к первому числу: 9_(9+9)_9 (9+1)_8_9 10_8_9

1089

Это правило работает всегда!

Быстрое возведение в квадрат

Пример: (2x(2+1)) * 25=252 2 x 3 = 6

625

Умножение на 5

Пример: 2682 x 5 = (2682 / 2) * 5 и 0 2682 / 2 = 1341 (целое число, поэтому добавляем 0)

13410

Еще пример: 5887 x 5 2943,5 (дробное число (опускаем запятую, добавляем 5)

29435

Умножение на 9

Умножение на 4

Хитрость этого способа состоит в том, что нужно просто умножить число на 2, а потом снова на 2: 58 x 4 = (58 x 2) + (58 x 2) = (116) + (116) = 232

Как рассчитать чаевые

Пример: 15% от $25 = (10% от 25) + ((10% от 25) / 2)

$2.50 + $1.25 = $3.75

Сложное умножение

Если вам нужно перемножить большие числа, причем одно из них четное, вы можете просто перегруппировать их: 32 x 125 все равно, что: 16 x 250 все равно, что: 8 x 500 все равно, что:

4 x 1000 = 4,000

Деление на 5

Пример: 195 / 5 195 * 2 = 390

Переносим запятую: 39,0 или просто 39.

Еще пример: 2978 / 5 2978 * 2 = 5956

595,6

Вычитание из 1000

Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10: 1000 — 648

  • от 9 отнимите 6 = 3
  • от 9 отнимите 4 = 5
  • от 10 отнимите 8 = 2

Ответ: 352

Систематизированные правила умножения

  • Умножение на 5: умножьте на 10 и разделите на 2.
  • Умножение на 6: иногда легче умножить на 3, а потом на 2.
  • Умножение на 9: умножьте на 10 и отнимите исходное число.
  • Умножение на 12: умножьте на 10 и дважды прибавьте исходное число.
  • Умножение на 13: умножьте на 3 и 10 раз прибавьте исходное число.
  • Умножение на 14: умножьте на 7, а затем на 2.
  • Умножение на 15: умножьте на 10 и 5 раз прибавьте исходное число.
  • Умножение на 16: если хотите, 4 раза умножьте на 2. Или умножить на 8, а потом на 2.
  • Умножение на 17: умножьте на 7 и 10 раз прибавьте исходное число.
  • Умножение на 18: умножьте на 20 и дважды отнимите исходное число.
  • Умножение на 19: умножьте на 20 и отнимите исходное число.
  • Умножение на 24: умножьте на 8, а потом на 3.
  • Умножение на 27: умножьте на 30 и 3 раза отнимите исходное число.
  • Умножение на 45: умножьте на 50 и 5 раз отнимите исходное число.
  • Умножение на 90: умножьте на 9 и припишите 0.
  • Умножение на 98: умножьте на 100 и дважды отнимите исходное число.
  • Умножение на 99: умножьте на 100 и отнимите исходное число.

Как высчитать проценты?

Пример: необходимо вычислить 7% от 300.

Выходит, что 7% от 100 будет 7. 8% от 100 = 8.

35,73% от 100 = 35,73

Вернемся к нашему примеру (7% от 300). 7% от первой сотни = 7 7% от второй сотни — тоже 7 7% от третьей сотни — так же 7.

Итак, 7 + 7 + 7 = 21.

Если 8% от 100 = 8, то 8% от 50 = 4 (половина от 8).

Еще примеры: 8% от 200 = 8 + 8 = 16. 8% от 250 = 8 + 8 + 4 = 20 8% от 25 = 2,0 (передвигаем запятую влево) 15% от 300 = 15+15+15 =45

15% от 350 = 15+15+15+7,5 = 52,5

[Источник: http://great.az/]

Что еще стоит знать

Как бы стыдно мне не было, но к своим 30 годам я поняла, что очень плохо считаю в уме элементарные числа и трачу на это много времени. Этот недостаток я решила исправить и нашла на просторах интернета инструменты, которые помогли мне научиться считать в уме.

Вычитание 7,8,9 Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть из любого числа 8, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.

  • Умножение на 9. Быстро умножить любое число на 9 можно следующим образом: сначала умножьте это число на 10 (просто добавьте 0 в конце), а затем вычтите из результата само число. Например 89*9=890-89=801. Эту операцию необходимо довести до автоматизма.
  • Умножение на 2. Для устного счета очень важно уметь быстро умножать любое число на 2. Для умножения на 2 не круглых чисел попробуйте округлить их до ближайших более удобных. Так 139*2 проще считать, если сначала умножить 140*2 (140*2=280). а потом вычесть 1*2=2 (именно 1 нужно прибавить к 139, чтобы получить 140) Итого: 140*2-1*2=278
  • Деление на 2. Для устного счета также важно уметь быстро делить любое число на 2. Несмотря на то, что многим умножение и деление на 2 дается достаточно просто, в сложных случаях также пытайтесь округлять числа. Например, чтобы разделить 198 на 2, нужно сначала разделить 200 (это 198+2) на 2 и отнять 1 (1 мы получили, разделив прибавленные 2 на 2) Итого: 198/2=200/2-2/2=100-1=99.
  • Деление и умножение на 4 и 8. Деление (или умножение) на 4 и 8 являются двукратным или трехкратным делением (или умножением ) на 2. Производить эти операции удобно последовательно. Например, 46*4=46*2*2=922*2=184
  • Умножение на 5. Умножать на 5 очень просто. Умножение на 5 и деление на 2 — это практически одно и то же. Так 88*5=440, а 88/2=44, поэтому всегда умножайте число на 5, поделив число на 2 и умножив его на 10.
  • Умножение на однозначные числа. Чтобы быстро считать в уме, полезно уметь умножать двузначные и трехзначные числа на однозначные. Для этого нужно умножать дву- или трехзначное чило поразрядно. Например, умножим 83*7. Для этого сначала умножим 8 на 7 (и допишем 0, так как 8 — разряд десятков) и прибавим к этому числу произведение 3 и 7. Таким образом, 83*7=80*7+3*7=560+21=581. Возьмем более сложный пример 236*3. Итак, умножаем сложное число на 3 поразрядно: 200*3+30*3+6*3=600+90+18=708.
  • Определение диапазонов. Чтобы не запутаться в алгоритмах и по ошибке выдать совсем неверный ответ, важно уметь строить примерный диапазон ответов. Так умножение однозначных чисел друг на друга, может дать результат не более 90 (9*9=81), двузначных — не более 10 000 (99*99 =9801), Трехзначных не более — 1 000 000 (999*999=998001)

Деление 1000 на 2,4,8,16. И наконец, полезно знать деление чисел, кратных 10 на числа, кратные двум:

100=2*500=4*250=8*125=16*62,5

[Источник: http://evgeniyafirsova.ru/]

Как быстро умножать двузначные числа в уме?

Умение мгновенно считать в уме может стать бесценным подспорьем в работе и в условиях скоростных темпов жизни современного человека.

Как быстро умножать большие числа, как овладеть такими полезными навыками? У большинства вызывает затруднения устное перемножение двузначных чисел на однозначные. А о сложных арифметических расчетах и говорить нечего. Но при желании способности, заложенные в каждом человеке, можно развить. Регулярные тренировки, немного усилий и применение, разработанных учеными, эффективных методик позволят достичь потрясающих результатов.

Выбираем традиционные методы

Проверенные десятилетиями способы перемножения двузначных чисел не теряют своей актуальности. Простейшие приемы помогают миллионам обычных школьников, учащихся специализированных ВУЗов и лицеев, а также людям, занимающимся саморазвитием, усовершенствовать вычислительное мастерство.

Умножение с помощью разложения чисел

Наиболее легким способом, как быстро научиться умножать большие числа в уме, является перемножение десятков и единиц. Сначала умножаются десятки двух чисел, затем поочередно единицы и десятки. Четыре полученных числа суммируются. Для использования этого метода важно уметь запоминать результаты перемножения и складывать их в уме.

Например, для умножения 38 на 57 необходимо:

  • разложить число на (30+8)*(50+7);
  • 30*50 = 1500 – запомнить результат;
  • 30*7 + 50*8 = 210 + 400 = 610 – запомнить;
  • (1500 + 610) + 8*7 = 2110 + 56 = 2166

Естественно, необходимо отлично знать таблицу умножения, так как быстро умножать в уме этим способом не удастся без соответствующих умений.

Умножение в столбик в уме

Визуальное представление привычного перемножения в столбик многие используют при расчетах. Этот метод подойдет тем, кто умеет надолго запоминать вспомогательные числа и выполнять с ними арифметические действия. Но процесс значительно упрощается, если вы научились, как быстро умножать двузначные числа на однозначные. Для перемножения, например, 47*81 нужно:

  • 47*1 = 47 – запомнить;
  • 47*8 = 376 – запоминаем;
  • 376*10 + 47 = 3807.

Запоминать промежуточные результаты поможет проговаривание их вслух с одновременным суммированием в уме. Несмотря на сложность мысленных вычислений, после непродолжительных тренировок этот метод станет вашим любимым.

Умножение на 11

Это, пожалуй, самый простой способ, который используется для умножения любых двузначных чисел на 11.

Достаточно между цифрами множителя вставить их сумму: 13*11 = 1(1+3)3 = 143

Если в скобках получается число больше 10, то к первой цифре добавляется единица, а из суммы в скобках вычитается 10. 28*11 = 2 (2+8) 8 = 308

Главное — тренироваться непрерывно!

Очень удобно перемножать числа, близкие к 100 разложением их на составляющие. Например, необходимо умножить 87 на 91.

  • Каждое число необходимо представить как разницу 100 и еще одного числа:(100 — 13)*(100 — 9)Ответ будет состоять из четырех цифр, две первые из которых – разница первого множителя и вычитаемого из второй скобки или наоборот – разница второго множителя и вычитаемого из первой скобки.87 – 9 = 7891 – 13 = 78
  • Вторые две цифры ответа — результат перемножения вычитаемых из двух скобок.13*9 = 144
  • В результате получаются числа 78 и 144. Если при записывании окончательного результата получается число из 5 цифр вторую и третью цифру суммируем. Результат: 87*91 = 7944.

Это самые простые способы перемножения. После многократного их применения, доведения вычислений до автоматизма можно осваивать более сложные техники. И через некоторое время проблема, как быстро умножить двузначные числа перестанет вас волновать, а память и логика существенно улучшатся.

[Источник: http://interesno.cc/]

Поделиться статьей с друзьями!

1obuchenie.com

Как научить ребенка считать в уме до 10 и решать примеры

Современные дошкольники буквально закормлены достижениями технического прогресса. Им не всегда понятно, для чего нужен счет в уме, если в телефоне или на компьютере есть калькулятор. А родители между тем обеспокоены подготовкой своих детей к школе. Как же научить ребенка считать в уме?

Этапы обучения

Процесс умственного счета у детей складывается из двух компонентов: речевого и двигательного.

Речевой компонент выражается в проговаривании счетных действий, затем в прошептывании (один плюс один будет два). И только после этого ребенок будет готов считать «глазами», про себя.

Двигательный элемент состоит в перекладывании считаемых предметов. Так ребенок наглядно представляет – больше или меньше предметов стало. Сначала малыш следит за появляющимися предметами пальчиком, потом – только глазами. И лишь затем он будет готов считать в уме: сначала до 5, затем до 10 и так далее.

Таким образом, для того чтобы научить ребенка считать в уме в пределах десятки, нужно совместить перекладывание предметов с запоминанием этого количества. А к этому ребенка нужно подготовить.

В самом начале дошкольника нужно научить:

  • осознавать разницу между понятиями «один» — «много»;
  • понимать, что значит «больше», «меньше», «столько же» (равно);
  • различать порядковый (первый, второй) и количественный (один, два) счет;
  • понимать, что такое состав числа (например, что 4 – это 2+2, 3+1);
  • связывать в сознании количество с его письменным числовым выражением (то есть понимать, что 5 морковок обозначается цифрой 5).

Учитывая наглядно-действенный способ мышления маленьких детей, объяснять эти понятия нужно на конкретных предметах. Лучше – любимых ярких игрушках малыша, позволяя ему в процессе игры перемещать их, чтобы сделать поровну, больше, меньше, много. Умение сравнивать количество поможет быстрому освоению счета в уме.

Начальным этапом освоения устного счета является усвоение счета сначала до 5, затем до 10. Далее нужно помочь ребенку запомнить все результаты сложения-вычитания чисел первой десятки. После этого дошкольники смогут освоить способы выполнения этих действий в уме с двузначными числами. Здесь уже главным будет научить ребенка понимать и запоминать методику сложения-вычитания в следующих десятках.

На каждом этапе важно не механическое зазубривание, а именно понимание и запоминание каждого шага.

Когда вы начнете решать с малышом простейшие задачки, старайтесь предлагать ему несколько вариантов решения, если возможно. Это разовьет математическую гибкость и облегчит обучение на последующих этапах.

  • Три готовых сценария комплексных развивающих занятий в формате pdf;
  • Видео-рекомендации по проведению комплексных игр и по их самостоятельному составлению;
  • План-схему для составления таких занятий дома

Подпишись и получите бесплатно:

С чего и когда начинать?

Начинать обучение устному счету возможно уже в 2 – 3 года, постепенно усложняя задачи. Главное при этом – считать в процессе игры. Например, собирая кубики или пирамидки, проговаривать: «Кладем первый кубик (первое кольцо), сверху – второй. Смотри, кубик был один, теперь их стало 2».

В игровой форме у ребенка просыпается естественный интерес–  и он учится легко. При этом нужно помнить, что ребенок младшего дошкольного возраста запоминает лишь то, что ему интересно. Игра для этого будет лучшим способом. Главное здесь – расположение и поддержка родителей, их умение заинтересовать кроху процессом. А за этим придет нужный результат.

В 3–4 года можно считать кнопки, застегивая куртку, количество ложечек каши, которые малыш скушал на завтрак, число тарелок или ложек на столе, число ступенек до двери подъезда и т. д. На прогулке можно считать машины (если считать только красные или белые, можно заодно закрепить и название цветов), кошечек или фонари. Можно в магазине посчитать, сколько куплено яблок, йогуртов или еще чего-то штучного, во время готовки – количество продуктов, которые берет мама.

Визуализации счета способствуют и карточки с изображением количества предметов и числовых обозначений. Играя с ними, можно научить ребенка понимать, например, что цифра 3 – это 3 яблока. То есть малыш научится соотносить количество и его числовое изображение. Такие карточки можно сделать самостоятельно и применять начиная с 4 лет.

С помощью карточек, развивающих пособий или игрушек можно объяснять ребенку состав числа. То есть, что 5 зайчиков можно получить, если сложить 2 и 3, 1 и 4, или 3+2, 4+1. При этом слагаемые поменялись местами, но результат остался прежним. Это необходимо, чтобы научить ребенка решать простые примеры. Кстати, складывать или вычитать в пределах десяти дети прекрасно учатся на обычных монетах. Например, считая, сколько нужно монет, чтобы купить конфету. В 5–6 лет дошкольник с удовольствием будет складывать цифры на номерах машин (скажем, 135 – это 1+3+5).

Еще один способ закрепить это понимание (а также соотношения больше-меньше, один-много) – игра в магазин. Ребенок назначается продавцом. На столе раскладывают «товары» (фрукты, овощи, игрушки, книжки), присваивая каждому из них карточку-ценник с обозначением конкретного числа. Например, яблоко стоит 2 монетки (можно придумать свое название денежной валюты – будет только интереснее). Затем малыш должен будет считать покупки мамы, вычислять, сколько денег они стоят.

Мама может сказать: «У меня 3 яблока. Груш мне нужно на 1 меньше». Или: «Я беру 2 йогурта. Мне нужно, чтобы йогуртов и печенья было поровну». Можно развивать эту игру так, как подскажет фантазия родителей, задавая самые разнообразные вопросы, изучая не только счет, но и простейшие вычисления. Главное – чтобы чаду было интересно считать.

Чего делать не надо?

Почему для будущего школьника так важен именно устный счет? Потому что только он помогает дошкольнику развивать интеллектуальные способности, память. А еще – один важный навык, который мы обычно называем смекалкой. Устный счет помогает научиться не только считать, но и думать быстро. Это пригодится при последующей социализации, поможет быть успешным в карьере. Поэтому, обучая дошкольника устному счету, важно не пользоваться методиками, замедляющими его мыслительные процессы.

Например, современные педагоги не советуют начинать обучение счету на пальцах. Они всегда под рукой, их можно рассмотреть и потрогать, малышу нет необходимости запоминать количественно изменившуюся картинку. А когда пальцы закончатся – начнутся трудности. Такой подход лишь тормозит развитие памяти интеллекта.

К такому же итогу может привести и обучение при помощи записи примеров или с использованием счетных палочек.

Привычка считать медленно может выработаться и при обучении складыванию или вычитанию по единице (чтобы к 2 прибавить 2, нужно сначала прибавить 1, получится 3, а затем прибавляем еще один – получается 4). Считать – это значит уметь складывать или вычитать сразу все числовые группы.

Очень похож на работу с калькулятором способ счета с помощью линейки (складываемые числа откладывают по сантиметровой линейке вправо, начиная с первого слагаемого, вычитаемые – влево). Тренировки памяти при этом – никакой, однако это упражнение работает на закрепление понятия «числового ряда», которое ребенку помогает понять суть вычитания и складывания чисел.

Осваиваем простые математические действия

Для того чтобы научиться хорошо складывать и отнимать, ребенок должен манипулировать одними и теми же однородными предметами, соотнося их с представлением каждого числа. Это помогает включать зрительную и тактильную память дошкольника для запоминания результатов действий с целыми числовыми группами, а не по единице. Поэтому на этом этапе всевозможные разнородные предметы или игрушки уже не подходят. Лучше заменить их простыми и понятными кубиками.

Для начала понадобится 5 кубиков, коробка с расчерченными клетками под них и карточки с изображением чисел от 1 до 5. Расположение (конфигурация) и количество кубиков откладываются в памяти дошкольника, чего не приносит работа с палочками или пальцами – они расположены хаотично, не давая зрительного представления об определенной «конфигурации числа». Поэтому в голове ребенка не отложится конкретная «вычислительная картинка».

Малыша просят поставить в коробку 1 кубик, спрашивая, сколько это. При ответе – «один», он должен положить рядом с кубиком карточку с изображением цифры 1. Затем он добавляет второй кубик. Произносит: кубиков 2, меняет карточку с изображением единицы на карточку с изображением двойки. Повторив манипуляцию несколько раз, малыш запомнит изображение двух кубиков и далее будет называть их количество сразу, не пересчитывая. Таким же образом учат считать остальные цифры.

Далее обучаем непосредственно сложению и вычитанию. Ребенку нужно сказать, что кубики – это, например, веселые клоуны, клеточки в коробке – их домики. Теперь заселяем одного клоуна. Сколько клоунов станет, если придет еще один? Два. А сколько останется, если один уйдет? – Один. И так далее.

С помощью такой простой методики дошкольник довольно успешно освоит навыки устного счета и простые математические действия. А это, как уже говорилось, полезно не только для будущих уроков математики.

razvivashka.online


Смотрите также

Рубрика:  Разное